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Abstract: Block-wise missing data are becoming increasingly common in high-

dimensional biomedical, social, psychological, and environmental studies. As a

result, we need efficient dimension-reduction methods for extracting important in-

formation for predictions under such data. Existing dimension-reduction methods

and feature combinations are ineffective for handling block-wise missing data. We

propose a factor-model imputation approach that targets block-wise missing data,

and use an imputed factor regression for the dimension reduction and prediction.

Specifically, we first perform screening to identify the important features. Then,

we impute these features based on the factor model, and build a factor regression

model to predict the response variable based on the imputed features. The pro-

posed method utilizes the essential information from all observed data as a result

of the factor structure of the model. Furthermore, the method remains efficient

even when the proportion of block-wise missing is high. We show that the imputed

factor regression model and its predictions are consistent under regularity condi-

tions. We compare the proposed method with existing approaches using simulation

studies, after which we apply it to data from the Alzheimer’s Disease Neuroimaging

Initiative. Our numerical results confirm that the proposed method outperforms

existing competitive approaches.
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1. Introduction

Factor models play an important role in simultaneously extracting predictive

information and modeling the commonality and dependence of observed data.

The essential idea is to combine all predictors to construct low-dimensional latent

factor variable, without loss of information. Moreover, a factor model can be

utilized in a factor regression model, which associates the response variables and

the covariate information through latent factors. This is especially effective when

the data are high-dimensional. For this reason, the factor regression model has

been widely employed in many fields, including economics (Stock and Watson
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(2002)) and biomedical studies (West (2003); Rai and Daume (2008); Carvalho

et al. (2008)).

The existing literature on factor regression models includes the works of

Stock and Watson (2002), Artis, Banerjee and Marcellino (2005), Forni et al.

(2005), Bair et al. (2006), Anderson and Vahid (2007), Bai and Ng (2008), Gian-

none, Reichlin and Small (2008), Kneip and Sarda (2011), Pan et al. (2015), Guo,

Ahn and Zhu (2015), Zhu et al. (2017), Fan, Lian and Wang (2016), and Fan,

Xue and Yao (2017). Specifically, Stock and Watson (2002) apply the principal

components (PC) from a large number of predictors to estimate the factors when

forecasting a single time series. Bair et al. (2006) develop a joint model based on

factors estimated by the supervised PC. Kneip and Sarda (2011) apply the factor

model to decompose the predictors into two parts: uncorrelated random com-

ponents, reflecting common factors, and specific variabilities of the explanatory

variables. Pan et al. (2015) propose an additive hazards model with latent vari-

ables from a factor model. Zhu et al. (2017) propose a multiscale weighted PC

regression for performing matrix decompositions for both dimension reduction

and feature extraction. Fan, Xue and Yao (2017) analyze the projected PC for

a semiparametric factor model and develop sufficient forecasting using a sliced

inverse regression.

However, most existing factor regression models are built on fully observed

data. The statistical properties of factor regression models are not well stud-

ied for block-wise missingness. In the event of block-wise missing predictors, a

large portion of predictors is missing for one or more blocks of the sources data,

as indicated in Figure 1. This can be caused by high measurement costs, poor

data quality, or the noncompliance of participants. Block-wise missing data are

prevalent in multisource high-dimensional data, especially in the biomedical, so-

cial, psychological and environmental science fields. Therefore, it is important to

develop dimension-reduction methods and to achieve accurate prediction power

for block-wise missing data.

Recent works on solving block-wise missing data problems include those of

Zhou, Little and Kalbfleisch (2010), Yuan et al. (2012), Xiang et al. (2014),

Thung et al. (2014), Li et al. (2014), and Liu et al. (2017). For example, Liu

et al. (2017) develop a hypergraph classification model based on the availability

of different modalities from incomplete multi-modality data. Yuan et al. (2012)

propose an incomplete multi-source feature learning method (iMSF) that per-

forms feature learning for each disjoint group independently, and then combines

these results. However, the iMSF does not provide a consistent prediction model
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for a unified data source across different groups. This makes it difficult to predict

when the testing data involve a different data source combination to that of the

training data. Xiang et al. (2014) propose an incomplete source-feature selection

method (iSFS) to address the above problems. They first partition subjects into

several views, according to the availability of data modalities, and then build a

bi-level (i.e., both feature-level and source-level) feature learning model to learn

the optimal weights for the features and views. Although the iMSF and iSFS

both avoid imputing missing data, they do not fully utilize the observed data

from other groups when they build the models in each group, potentially leading

to inefficient estimations. Moreover, the accelerated gradient method in the iSFS

incurs a high computational cost for high-dimensional parameters and multi-view

feature learning models.

We propose a novel imputation method, referred to as factor-model imputa-

tion, for carrying out block-wise missing value imputations and performing di-

mension reduction using a factor regression. First, we first apply the sure screen-

ing method to obtain those features related to the response variables, based on

block-wise missing data. Then, we use the dependence of the selected covariates

to impute the missing values. Consequently, we build an imputed factor regres-

sion model for predicting a response variable. From a theoretical viewpoint, we

provide the convergence rates of the imputation and estimators of the factors

and factor loadings. In addition, we achieve consistency of the factor regression

coefficient estimators and the predictions. Simulation studies and a real example

using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) show

that the proposed method has good prediction accuracy for finite samples.

The main merits of the proposed method are summarized as follows. It fully

utilizes information on correlated predictors to impute missing data through

factor modeling. In contrast to traditional imputation methods, such as the

expectation-maximization method and inverse probability weighting method

(Robins, Rotnitzky and Zhao (1994)), the proposed method does not rely on

the missing mechanism and the probability of missingness. Therefore, it is ro-

bust against the misspecified probability of missingness. Moreover, the proposed

method adopts the PC method, which offers several computational advantages.

The PC method is asymptotically equivalent to the maximum likelihood method

under normal random errors (Chamberlain and Rothschild (1983); Bai (2003)).

However, the maximum likelihood method is not feasible for large-dimensional

factor models, owing to the large number of parameters involved. In addition,

the proposed method compares favorably with those of Yuan et al. (2012) and
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Xiang et al. (2014), because it fully extracts the information of all observed data

and has better predictive accuracy, even when the proportion of missing data is

quite high. Most importantly, the proposed factor regression models for predic-

tion apply the observed part of the testing data only and do not need to impute

the missing part of the testing data. This is quite different from the standard im-

putation methods, such as the zero imputation, k-nearest neighbors imputation,

and inverse probability weighting method.

The proposed method targeting block-wise missing data is motivated by the

ADNI data (Jack et al. (2008)) published in 2003, followed by the ADNI-1, ADNI-

GO, and ADNI-2 groups. The primary goal is to test whether serial biological

clinical markers and neuropsychological assessments can be combined to measure

the progression of mild-cognitive impairment (MCI) and early Alzheimer’s dis-

ease (AD). To facilitate AD research using multi-source data, the ADNI study

has been collecting data from various sources, including cerebrospinal fluid (CSF)

biomarkers, positron emission tomography (PET), magnetic resonance imaging

(MRI), and microarray gene expression profile data (GENE). Unfortunately, not

all samples in the ADNI study are fully collected, because they are from different

sources. Thus, the existence of block-wise missing data is a major challenge.

Figure 2 shows the missing structure of baseline ADNI-2 data, with block-wise

missing features. The data consist of high-dimensional variables from MRI or

GENE data, which often contain irrelevant variables corresponding to the re-

sponse variable. Moreover, these variables are correlated with each other, be-

cause they are from various sources. For more detail on the ADNI data, see

www.adni.loni.ucla.edu.

The remainder of the paper is organized as follows. Section 2 provides the

background for block-wise missing data and the factor regression model. Section

3 presents the proposed method and the theoretical results. Section 4 compares

the proposed approach with existing works using simulation studies. Section 5

illustrates an application of the proposed method to ADNI data. Concluding

remarks and a discussion are provided in Section 6. All technical derivations are

provided in the Supplementary Material.

2. Background

2.1. Data structure for block-wise missing data

In this subsection, we introduce some notation and the structure of the

block-wise missing data. Let {xi, yi} (i = 1, . . . , n) be a set of independent and

www.adni.loni.ucla.edu
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Figure 1. An illustration of the proposed method, with multi-source block-wise missing
data with four sources. The blank region indicates missing data from the corresponding
source.

identically distributed (i.i.d.) observations of random variables {x, y}, where y is

the response variable without missing, and x denotes the p-dimensional predictor

variables from K different data sources that could be block-wise missing; that is,

a certain block of predictors could be missing for some subjects (see Figure 1). We

assume that each participant has at least one observed data source; that is, there

are 2K − 1 possible missing patterns: the number of all possible combinations of

K data sources, except for the one with all data sources missing.

Denote Y = (y1, . . . , yn)> and X = (x1, . . . ,xn)>= (X1, . . . ,Xp) as an n× p
design matrix. Let Xij be the jth variable measured for the ith subject. Thus,

xi = (Xi1, . . . , Xip)
>. The predictors X can be divided into k(k ≤ 2K−1) groups

according to different missing patterns, denoted as X(j) = {Xo(j),Xm(j)}, for

j = 1, . . . , k, where Xo(j) ∈ Rnj×pj is a matrix of observed covariates in the

jth group, and Xm(j) ∈ Rnj×(p−pj) is a matrix of missing covariates in the jth

group. Figure 1 illustrates the case when the number of data sources K = 4 and

k = 2K − 1 groups. For example, the first three sources are observed for X(2),

but the fourth source is missing. In contrast, only the fourth source is observed

in group X(k). We consider the case of p� n, which is very common in imaging

and genetics studies with a high dimension of predictors that exceeds the sample

size.

2.2. Factor regression model

In this subsection, we provide the background of the factor regression model.
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See also Stock and Watson (2002), West (2003), Rai and Daume (2008), and

Carvalho et al. (2008).

The factor regression model consists of two models: one for extracting in-

formation from high-dimensional predictors, and one for predictions using latent

factors; that is, {
xi = Λwi + νi,

yi = α>wi + εi,
(2.1)

where α is an r×1 coefficient vector corresponding to an r×1 latent factor vector

wi, Λ = (λ1, . . . ,λp)
> is a p × r matrix of factor loadings corresponding to the

number of factors, εi is a random error with a zero mean and a finite variance,

and νi is a p× 1 random error vector with a zero mean and a covariance matrix

with bounded eigenvalues. The first part of model (2.1) is a latent factor model

that attributes a common structure in xi to underlying factors, and isolates any

variation that is purely idiosyncratic in the error νi. In the second part of model

(2.1), the response variable yi is conditionally independent of the variables xi,

given the latent factor variables wi. In addition, the original design variables xi

provide information on the latent variables through the factor model, but do not

form part of the regression (West (2003)). In matrix form, the factor regression

models can be rewritten as {
X = WΛ>+ ν,

Y = Wα+ ε,
(2.2)

where W = (w1, . . . ,wn)>, ε = (ε1, . . . , εn)>, and ν = (ν1, . . . ,νn)>. The pur-

pose of the factor model is to construct low-dimensional latent factor variables

W by extracting the underlying structure from the predictors.

Two major approaches are commonly used to fit factor regression model. The

first is the Bayesian method, given certain assumptions on the prior distribution

(West (2003); Rai and Daume (2008); Carvalho et al. (2008)). However, this type

of method is usually sensitive to the distribution assumptions. An alternative is

the least squares method, with constraints. Specifically, we estimate wi and Λ

by minimizing the least squares objective function (Stock and Watson (2002)):

Q(W,Λ) = (np)−1
n∑

i=1

p∑
j=1

(Xij − λ>jwi)
2 (2.3)

= (np)−1 tr
{

(X−WΛ>)>(X−WΛ>)
}
,

subject to W>W/n = Ir and Λ>Λ being diagonal, where tr (·) denotes the matrix
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trace and Ir denotes an r × r identity matrix.

By replacing Λ in (2.3) with X>W(W>W)−1 derived from (2.2), minimizing

(2.3) is equivalent to maximizing tr {W>XX>W}, subject to W>W/n = Ir.

Then, the problem becomes one of finding the principal components of XX>.

Thus, the estimated factor matrix Ŵ is
√
n times the eigenvectors corresponding

to the first r largest eigenvalues of the matrix XX>/(np), in decreasing order,

and the corresponding estimator of Λ is Λ̂ = X>Ŵ/n. The PC method is easy to

compute and only involves the eigenvalue calculation of an n× n matrix, where

n is smaller than the dimension p. Moreover, this estimator is asymptotically

equivalent to the maximum likelihood estimator under the normality assumption

(Chamberlain and Rothschild (1983); Bai (2003)). Therefore, we adopt this

method to fit the factor regression models, because the computational cost is

relatively low.

The normalization restriction of W>W/n = Ir and the diagonal constraint

of Λ>Λ ensure the identifiability of the spaces spanned by the columns of W and

by the columns of Λ. Furthermore, they guarantee that W and Λ are estimable

up to an invertible matrix transformation. Here, Ŵ>Ŵ/n = Ir holds, by con-

struction, and Λ̂
>
Λ̂ = V̂, where V̂ is an r×r diagonal matrix of the first r largest

eigenvalues of XX>/(np), in decreasing order. Thus, the estimators Ŵ and Λ̂

satisfy the restrictions. Consequently, the factors can be estimated asymptoti-

cally with rotation. Bai and Ng (2013) provide several conditions under which

the true factors and true matrix of factor loadings can be estimated asymptoti-

cally without rotation. These conditions include W>W/n = Ir, and that Λ>Λ is

a diagonal matrix with distinct entries. In this study, however, we only consider

the estimators with rotation, because this will not affect the model interpreta-

tion. Once we obtain the estimator of W, the estimator α̂ = (Ŵ>Ŵ)−1Ŵ>Y.

Thus, we can predict yi by model (2.1), given predictor xi and estimators {Λ̂, α̂}.

3. Proposed Method

3.1. Factor-model imputation

In this section, we present the proposed factor-model imputation approach

that targets high-dimensional block-wise missing data. High-dimensional data

often contain variables with redundant information, where most of the features

might not be relevant to the response variable. This could lead to selecting

an improper factor model and producing a biased imputation. Thus, we first

select those features that are related to the response variable, before imputing
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the missing data. We apply correlation screening to select features based on the

observed data. Specifically, we standardize each predictor using the observed

values in the corresponding predictor. Define

ωj = n−1oj X>ojYoj for j = 1, . . . , p,

where noj is the number of observed values in the jth variable, Xoj is an noj × 1

vector containing the observed values of the jth variable, and Yoj is the cor-

responding response variable vector. We obtain a p-dimensional vector ω =

(ω1, . . . , ωp)
>, which separately measures the association between a predictor and

Y, and is equivalent to the marginal correlation of the predictors, with the re-

sponse variable rescaled by the standard deviation of the response. Therefore, ω

can be applied to select relevant features. We define a submodel

Mq = {1 ≤ i ≤ p : |ωi| is among the q largest of ω},

where q can be larger or smaller than the sample size n; for instance, we may

choose a conservative q of n/ log(n) or n−1, depending on the order of the sample

size n.

Screening enables us to choose predictors that are more relevant to Y, thus

ensuring effective factor-model imputation and prediction. Moreover, we reduce

the dimensionality from a huge p to a relatively large q. Consequently, we can

obtain additional relevant features Z = (z1, . . . ,zn)> = (Z1, . . . ,Zq), a subset

columns of X corresponding to Mq. Similarly to Fan and Lv (2008), we can

show that the screening method based on the observed data satisfies the sure-

screening property (see the Supplementary Material for technical details).

After sure screening, Z still contains block-wise missing variables, and the

number of data sources may decrease. For simplicity, we assume that Z still con-

sists ofK data sources in total and k data groups, denoted as Z(j) = {Zo(j),Zm(j)},
for j = 1, . . . , k. Here, Zo(j) ∈ Rnj×qj is a matrix with observed data in the jth

group, and Zm(j) ∈ Rnj×(q−qj) is an unavailable matrix with missing values in the

jth group; see Figure 1 for an example. We assume there exists a group of sub-

jects Z(1), where all predictors are observed; that is, q1 = q, and the proportion

of missing data is (n− n1)/n.

We propose a new imputation approach for missing data that integrates

multiple incomplete-block data. One challenge here is that the screening features

Z are from multiple sources, and could be correlated with each other. Therefore,

it is important to incorporate the dependence between features when estimating

estimate missing data.
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We define a factor model among the screening features as

Z = WΛ>+ e, (3.1)

where W is an n×r factor variable matrix, Λ is a q×r matrix of factor loadings,

r is the number of factors, e = (e1, . . . , en)> is an n× q matrix of random errors,

and ei has a zero mean and a covariance matrix with bounded eigenvalues. The

factor models corresponding to the block-wise observed and missing data are

Zo(j) = W(j)Λ
>
o(j) + eo(j), (3.2)

Zm(j) = W(j)Λ
>
m(j) + em(j), (3.3)

respectively, where W(j) ∈ Rnj×r is the jth sub-matrix of W according to missing

patterns, and Λo(j) ∈ Rqj×r and Λm(j) ∈ R(q−qj)×r are the coefficient matrices

corresponding to the block-wise observed data Zo(j) and missing data Zm(j),

respectively.

In model (3.2), the observed covariate Zo(j) is used to estimate W(j). With

the estimator of W(j), the missing values Zm(j) in model (3.3) can be imputed

if Λ is known. Thus, it is critical to obtain an estimator of Λ. Based on the

complete data Z(1), we consider the following least squares objective function:

Q(W(1),Λ) = (n1q)
−1 tr {(Z(1) −W(1)Λ

>)>(Z(1) −W(1)Λ
>)}, (3.4)

subject to W>
(1)W(1)/n1 = Ir and Λ>Λ being diagonal. See Section 2.2 for the

calculation of the estimated factor matrix W̃(1) and the loading matrix Λ̃, where

the matrix W̃(1) consists of
√
n1 times the eigenvectors corresponding to the

first r largest eigenvalues of the matrix Z(1)Z
>
(1)/(n1q), in decreasing order, and

Λ̃ = Z>(1)W̃(1)/n1.

Using the estimator Λ̃, we obtain the estimators of submatrices Λo(j) and

Λm(j), denoted as Λ̃o(j) and Λ̃m(j), respectively. By model (3.2), we obtain

W̃(j) = Zo(j)Λ̃o(j)(Λ̃
>
o(j)Λ̃o(j))

−1. Then, the missing values in (3.3) are imputed

as Z̃m(j) = W̃(j)Λ̃
>
m(j), for j = 2, . . . , k. The observed and imputed data for the

jth data group are Zo(j) and Z̃m(j), respectively, and

Ẑ = {{Zo(j), Z̃m(j)} : j = 1, . . . , k} (3.5)

is referred to as the factor-model imputation. The imputing process only involves

the eigenvalue calculation of an n1×n1 matrix and the inversion of r×r matrices

(Λ̃
>
o(j)Λ̃o(j))

−1. Thus the computational cost is relatively low, because n1 and

r are smaller than the original dimension q. Moreover, the imputed features

retain the correlation information, and hence preserve the full information of the
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observed data for predictions. The consistency of the factor-model imputation is

described in Section 3.3.

The proposed imputation method applies the factor structure of multi-source

predictors to estimate missing covariates using the PC method. The proposed

method is attractive because it does not rely on the missing mechanism or the

specified missing probability. Essentially, our method only requires a group of

subjects with screening predictors that are fully observed in order to provide

factor structure information for all covariates. The factor-model imputation can

also be extended to include the case without fully observed subject information.

See Section 3.4 for further details.

Note that the number of factors could be unknown, and thus must be esti-

mated. Prior studies on determining the number of factors include the works of

Bai and Ng (2002), Alessi, Barigozzi and Capasso (2010), and Ahn and Horen-

stein (2013). In our numerical studies, we follow the information criterion pro-

posed by Bai and Ng (2002),

IC(t) = ln{Q̂(Z(1))t}+ tg(n1, q), (3.6)

where Q̂(Z(1))t is the minimum value of function (3.4) with t factors and g(n, q)

is a penalty function, for example, g(n, q) = ((n + q)/(nq)) ln(nq/(n + q)). We

can obtain the number of factors r by minimizing (3.6).

3.2. Prediction and implementation

In this subsection, we predict responses following the imputed factor re-

gression. Similarly to Section 2.2, we estimate Λ and α in the factor regres-

sion models (2.2) using the imputed covariables Ẑ; that is, Λ̂ = Ẑ>Ŵ/n and

α̂ = (Ŵ>Ŵ)−1Ŵ>Y, where the matrix Ŵ is
√
n times the eigenvectors corre-

sponding to the first r largest eigenvalues of the matrix ẐẐ>/(nq), in decreasing

order. The number of factors r is defined as the minimizer of the criterion in

(3.6), based on the imputed variables. Consequently, we can predict yi using

ŷi = α̂>ŵi.

The following algorithm provides the specific implementation. Given training

data {X,Y} and testing data x, we make a prediction as follows.

Implementation: Prediction based on imputed factor regression models

1. Standardize the columnwise components of X to be mean zero and standard

deviation one on the observed training data: Xj ← (Xj−Xj)/std(Xj); and

center response Y: Y ← Y − Y, where Xj and Y are the means of the

columnwise observed components Xj and Y, respectively.
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2. Perform sure screening to obtain the significant features Z and construct

the factor-model imputed predictors Ẑ using (3.5).

3. Fit the factor regression model based on Ẑ and obtain the estimators Λ̂ =

Ẑ>Ŵ/n and α̂ = (Ŵ>Ŵ)−1Ŵ>Y.

4. Standardize each component of x: xj ← (xj −Xj)/std(Xj), and obtain z

according to the screening feature in step 2.

5. Based on Λ̂ in step 3, obtain the factor values ŵ = zoΛ̂o(Λ̂
>
oΛ̂o)

−1, where

zo consists of observed values and Λ̂o is the sub-matrix of Λ̂ corresponding

to zo. Then, predict the response value ŷ = Y + α̂>ŵ.

One advantage of the proposed method is that the prediction process does

not require the imputation of missing data for the testing data, but does for the

observed part zo, owing to the nature of the factor model.

3.3. Theoretical properties

In this subsection, we establish the theoretical properties of the proposed

method. We assume that both the sample size n and the dimensionality p go

to infinity. Therefore, the number of samples n1 with all complete observations

also goes to infinity. Note that once the number of factors in the factor model

is estimated consistently, the following asymptotic results hold by a conditioning

argument. Throughout this paper, the number of factors r is assumed to be

known and fixed as n and p increase.

We define Tj as the collection of row indices corresponding to subjects in the

jth data group Z(j), and Mmj as the collection of column indices correspond-

ing to variables with missingness in the jth data group Z(j). The details of the

assumptions and the proof for the established theorems are provided in the Sup-

plementary Material. The following theorem gives the convergence rate of the

factor-model imputation.

Theorem 1. Under conditions (C1)–(C5), for t ∈ Tj and i ∈ Mmj (j =

2, . . . , k), we have

λ̃
>
i w̃t − λ>iwt = Op

{√
qj(min(

√
n1qj , q))

−1} .
Theorem 1 implies that the convergence rate of the estimator of λ>iwt as

an imputation is min{√n1, q/
√
qj}. When the factor loadings λi are all known,

λ>iwt can be estimated as the rate of convergence
√
n1. The rate of conver-

gence min{√n1, q/
√
qj} implies that the factor loadings are estimated. Based on
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the imputed values Ẑ, the convergence rates of the factor estimators and factor

loading matrix estimators are established in the following theorem.

Theorem 2. Under conditions (C1)–(C5), we have

(i) ŵt −H>wt = Op

{
(min(

√
q,
√
n1))

−1}, for t = 1, . . . , n;

(ii) λ̂i −H−1λi = Op

{
(min(

√
q,
√
n1))

−1}, for i = 1, . . . , q,

where H = (Λ>Λ/q)(W>Ŵ/n)V̂−1, and V̂ is an r × r diagonal matrix of the

first r largest eigenvalues of ẐẐ>/(nq), in decreasing order.

Theorem 2 indicates that there exists a rotation matrix H, such that ŵt is

an estimator of H>wt and λ̂i is an estimator of H−1λi. Moreover, ŴΛ̂
>

is an

estimator of WΛ>. In a regression analysis, using W as the regressor gives the

same predicted value as using WH as the regressor, because W and WH span

the same space. The following theorem indicates the consistency of the regression

coefficient estimators and the prediction.

Theorem 3. Under conditions (C1)–(C6), as p, n→∞, we have

(i) α̂−H−1α
p→ 00;

(ii) α̂>ŵt −α>wt
p→ 0 for t = 1, . . . , n.

3.4. Factor-model imputation without fully observed subject informa-

tion

In this subsection, we develop the factor-model imputation method that tar-

gets the screening features Z that do not have fully observed subject information.

Without a group of completely observed subjects, we utilize the correlation in-

formation from the block-wise observed data to obtain an efficient imputation

using an iterative procedure.

Specifically, the factor model (3.1) can be expressed according to the observed

and missing data blocks from different sources, as follows:

Z(i)
o = W(i)

o Λ(i)>+ e(i)o , (3.7)

Z(i)
m = W(i)

m Λ(i)>+ e(i)m , (3.8)

for i = 1, . . . ,K, where Z
(i)
o ∈ Rn(i)

o ×q(i) and Z
(i)
m ∈ Rn(i)

m ×q(i) consist of the

observed and missing parts of Z, respectively, corresponding to the ith data

source, Z(i) = {Z(i)
o ,Z

(i)
m } ∈ Rn×q(i) (see Figure 1), W

(i)
o ∈ Rn(i)

o ×r and W
(i)
m ∈

Rn(i)
m ×r are sub-matrices of W corresponding to Z

(i)
o and Z

(i)
m , respectively, Λ(i) ∈
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Rq(i)×r is the sub-matrix coefficient corresponding to the ith data source, and

Λ = (Λ(1)>, . . . ,Λ(K)>)>.

Based on model (3.7) and the PC method, we obtain the sub-matrix esti-

mator Λ̃
(i)

, consisting of

√
n
(i)
o times the eigenvectors corresponding to the first

r largest eigenvalues of the matrix Z
(i)>
o Z

(i)
o /(n

(i)
o q(i)), in decreasing order (Stock

and Watson (2002)). Thus, Λ̃ = (Λ̃
(1)>

, . . . , Λ̃
(K)>

)>. By model (3.2), we ob-

tain the estimated factor W̃(j) via
√
nj times the eigenvectors corresponding to

the first r largest eigenvalues of Zo(j)Z
>
o(j)/(njqj), in decreasing order. Thus,

W̃ = (W̃>
(1), . . . ,W̃

>
(k))
>. In addition, we can use model (3.3) to estimate the

missing values Z̃m(j) = W̃(j)Λ̃
>
m(j), for j = 1, . . . , k.

Because W̃ and Λ̃ are block-wise obtained, based on the different observed

data blocks, we can improve the estimation by using an iterative method to

fully extract the integral correlation information of all predictors. Specifically,

let Ẑ0 = {{Zo(j), Z̃m(j)} : j = 1, . . . , k} as the initial value. At the tth iteration,

the estimator Ŵt consists of
√
n times the eigenvectors corresponding to the

first r largest eigenvalues of Ẑt−1Ẑt−1>/(nq), in decreasing order, where Ẑt−1

represents the (t − 1)th iteration value. Then, Λ̂
t

= Ẑt−1>Ŵt/n. Based on

(3.3), we obtain Ẑt
m(j) = Ŵt

(j)Λ̂
t>
m(j), for j = 1, . . . , k. Thus, the tth iterative

imputation is Ẑt = {{Zo(j), Ẑ
t
m(j)} : j = 1, . . . , k}. We set ‖Ẑt− Ẑt−1‖ < c as the

convergence condition. The iterative procedure converges quickly and achieves

effective imputation power, as showed in Section 4.2. Incorporating the imputed

data, we follow Section 3.2 to predict the response values.

4. Simulation Study

In this section, we perform simulations to compare the proposed method (FR-

FI) with four competing methods: the iMSF method (Yuan et al. (2012)), iSFS

method (Xiang et al. (2014)), factor regression model with zero imputation (FR-

ZERO), and k-nearest neighbor imputation (FR-KNN) (Hastie et al. (1999)).

For the FR-ZERO method, we fill in the missing entries using zero, and then

analyze the imputed data using a factor regression and the sure-screening method.

The FR-KNN approach applies the k-nearest neighbor imputation (Hastie et

al. (1999)) to missing data and builds the factor regression utilizing the sure-

screening method.
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4.1. Study I

The first simulation study is designed to evaluate the finite-sample per-

formance of the proposed method. We assume a p-dimensional predictor x

from K = 4 different data sources, where x = (x(1)>,x(2)>,x(3)>,x(4)>)>, and

the corresponding dimension of x(j) is sj , with p =
∑4

j=1 sj . However, only

part of x(j) is related to the response variable y, denoted as x∗(j). Let x∗ =

(x∗(1)>,x∗(2)>,x∗(3)>,x∗(4)>)> be s-dimensional relevant predictors associated with

yi, and x∗c be (p− s)-dimensional variables unrelated to y.

We generate the data set {yi,xi} based on the factor structure yi = α>wi+εi,

x∗i = Λwi + νi, and x∗ci ∼ N(00, Ip−s), for i = 1, . . . , n, where wi ∼ N(00,Σ),

εi ∼ N(0, 1), and νi ∼ N(00, Is). We set the number of factors r = 5, parameters

α = (0.8, 0.5, 0.3, 0.1, 0.1)>, and the (l, j) component of Σ to 0.7|l−j|. We generate

an (s×r)-dimensional matrix Λ of factor loadings, with each component following

a standard normal distribution.

We consider two settings, with p = 1,000 or 4,000. When p = 1,000, we let

s1 = s2 = s3 = s4 = 250, and when p = 4,000, we let s1 = s2 = s3 = s4 = 1,000.

In both settings, the first 25 variables of x(j) in each data source are relevant

to the response y, and are denoted as x∗(j). That is, s = 100. We consider the

sample size n = 200 and different missing mechanisms.

In the following, we first construct the block-wise missing data with the miss-

ing completely at random (MCAR) mechanism, such that 80% or 40% of the

entire samples is completely observed, and the remainder of the sample is split

into 24−2 missing patterns, with an equal probability. Moreover, we consider the

missing not at random (MNAR) mechanism to construct the missing data, using

a variable δi to indicate the missing pattern of the ith sample. The variable δi is

generated from a multinomial distribution with P(x∗i ) = (P1(x
∗
i ), . . . , P15(x

∗
i )),

where Pj(x
∗
i ) = gj(x

∗
i )/
∑15

l=1 gl(x
∗
i ) and gj(x

∗
i ) = γjx

∗
i for j = 1, . . . , 15.

For simplicity, we consider two settings. One has γj = (0.1, . . . , 0.1), for j =

1, . . . , 14, and γ15 = (1, . . . , 1), with an average missing rate of 58%. The other

has γj = (0.1, . . . , 0.1), for j = 1, . . . , 15, with an average missing rate of 90%.

For each simulation, we employ 80% of the sample as training data, and the re-

maining 20% as testing data. We perform 100 simulation runs for each method.

Table 1 summarizes the performance of each method based on the mean

squared error (MSE) of the predicted values, where the MSE is defined as n−1∑
i(yi− ŷi)2. Note that the FR-FI is more robust than the other methods under

various missing rates and missing mechanisms. Specifically, the FR-FI produces
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Table 1. Mean and standard deviation (SD) of mean squared error (MSE) for prediction
in simulation study I.

MCAR MNAR
Missing rate 20% 60% 58% 90%

Method Mean SD Mean SD Mean SD Mean SD
(n, p, s) = (200, 1,000, 100)

FR-FI 1.054 0.242 1.073 0.228 1.055 0.234 1.019 0.452
FR-ZERO 1.238 0.273 1.390 0.318 1.394 0.311 1.464 0.302
FR-KNN 1.384 0.067 1.414 0.063 1.290 0.026 1.255 0.019

iSFS 1.357 0.356 1.462 0.388 1.475 0.360 1.490 0.410
iMSF 1.660 0.343 1.847 0.482 1.724 0.366 1.842 0.424

(n, p, s) = (200, 4,000, 100)
FR-FI 1.043 0.225 1.085 0.232 1.050 0.225 1.163 0.254

FR-ZERO 1.181 0.291 1.396 0.323 1.386 0.316 1.448 0.368
FR-KNN 1.115 0.007 1.200 0.031 1.295 0.059 1.194 0.045

iSFS 1.310 0.305 1.444 0.341 1.485 0.361 1.543 0.406
iMSF 1.715 0.410 1.874 0.437 1.748 0.364 1.905 0.433

Table 2. Mean and standard deviation (SD) of mean squared error (MSE) for prediction
in simulation study II.

MCAR MNAR
Method Mean SD Mean SD
FR-FI 1.066 0.229 1.097 0.262

FR-ZERO 1.408 0.340 1.313 0.314
FR-KNN 1.421 0.022 1.383 0.026

iSFS 1.517 0.363 1.456 0.393
iMSF 1.668 0.380 1.674 0.409

a smaller MSE than those of the other methods in all settings, especially when

the missing rate is as high as 60% (MCAR) and 90% (MNAR), and the dimension

p = 4,000 is also high. In these scenarios, the FR-FI is 33% better than the iSFS

and 73% better than the iMSF in terms of the MSEs. When the missing rate

increases, the MSEs of the iMSF and iSFS methods also increase. In contrast,

the MSEs of the FR-FI method increase only slightly when the missing rate

increases. In summary, this simulation study indicates that the FR-FI is able to

achieve better prediction power for multi-source block-wise missing data.

4.2. Study II

The second simulation study is designed to evaluate the finite-sample per-

formance of the proposed method when each subject has missing data. We still
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denote this as FR-FI. Similarly to Study I, we generate data {yi,xi} based on the

setting (n, p, s) = (200, 1,000, 100), and construct block-wise missing data with

24−2 different missing patterns; that is, the number of all possible combinations

of four data sources, except for the two combinations of the completely miss-

ing and completely observed sources. We generate the MCAR case, with equal

probability for 14 missing patterns and the MNAR case. For the MNAR, we

consider the parameters γjt of the indicator variable δi as 0.1 times the number

of the observed data sources in the jth missing pattern, for j = 1, . . . , 14 and

t = 1, . . . , s. We conduct 100 replications.

Table 2 summarizes the performance of each method under the MCAR and

MNAR cases. It is clear that the FR-FI exhibits the best overall performance in

terms of the MSE. Specifically, the MSE of the FR-FI is smaller than that of any

of the other methods under both missing mechanisms. The MSEs of the other

methods are all above 1.3. In contrast, the proposed method is able to reduce

the MSE by more than 20%. In particular, it is 56% (MCAR) and 53% (MNAR)

better than the iMSF, indicating that the FR-FI is able to improve the prediction

accuracy by incorporating important information from correlated predictors.

5. Real-Data Application

In this section, we apply the proposed method to the baseline ADNI-2 data

set (Jack et al. (2008)). The goal of this study is to predict the mini-mental state

examination (MMSE) score, a significant criterion used to categorize different

Alzheimer’s disease (AD) stages. Using this prediction procedure, we are able to

evaluate a patient’s disease progression based on the predicted MMSE.

AD is the most common form of dementia and results in the loss of memory

and impaired of cognitive and language skills. AD is the sixth-leading cause of

death in the United States. On the other hand, there is no effective prevention,

treatment, or way to slow the progression of the disease. The number of AD

patients has increased exponentially as a result of the aging population, causing

a socioeconomic burden to families and society (Brookmeyer et al. (2007)). The

initial ADNI study was launched in 2003 for AD, and was later followed by

ADNI-1, ADNI-GO, and ADNI-2.

In the ADNI data, high-dimensional variables are collected from multiple

sources to aid researchers and clinicians to develop new treatments for AD and to

monitor patients’ disease progression, in addition to decreasing the time and cost

of clinical trials. However, the ADNI data contain block-wise missing data, for
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Table 3. Statistics of the baseline ADNI-2 data set and the data sources used in our
evaluations: “o” denotes the observed data, “–” denotes the missing data, and the
number in parentheses is the number of features in each source.

Missing pattern CSF (3) PET (243) MRI (317) GENE (49386) # of samples
I – o – o 21
II o o – o 13
III o o o o 467
IV – o o o 118
V – – o o 39
VI – – o – 13
VII – o o – 47
VIII o o o – 356

# of samples 836 1,022 1,040 658 1,074

Figure 2. An illustration of multi-source block-wise missing data in the baseline ADNI-2
data, where there are 1,074 participants in total, and four sources (CSF, PET, MRI, and
GENE). The blank region indicates missing data from corresponding sources.

several reasons: low-quality data sources of certain samples might be discarded,

some data collection (e.g., PET scans) may be too costly for every participant,

and participants may not be willing to provide certain measurements (e.g., owing

to a lack of consent, participant attrition, or noncompliance with a long scan)

(Yuan et al. (2012)). The missing data often emerge in a block-wise fashion.

The proposed method is motivated by the multi-source block-wise missing

data. We use the baseline ADNI-2 data set to build factor regression models,

with the MMSE score as the response and features from four data sources: three

CSF features, 243 PET features, 317 MRI features, and 49,386 GENE features;

that is, p = 49,949. The data contain 1,074 subjects with eight different missing

patterns; see Figure 2 and Table 3 for an illustration of the multi-source block-
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Table 4. Mean and standard deviation (SD) of mean square error (MSE) and the relative
improvement (RIMSE) of the proposed method over existing methods in terms of the
mean MSE for ADNI data.

80% training rate 90% training rate
Method Mean SD RIMSE Mean SD RIMSE
FR-FI 5.5765 1.0511 – 5.4931 1.6009 –

FR-ZERO 6.1632 0.9657 10.5% 6.1858 1.6344 12.6%
FR-KNN 6.2669 1.0965 12.4% 6.0526 1.4362 10.2%

iSFS 5.7129 0.9499 2.5% 5.9301 1.7763 8.0%
iMSF 5.8137 1.0118 4.3% 5.7453 1.4704 4.6%

wise missing data and the sample size information of the ADNI-2 data. The

sample group with all complete observed features includes 467 subjects, and the

total missing rate is about 56.5%. The data are randomly split into an 80% or

90% training set, with the remaining data as testing data. The random split

is replicated 30 times. The average numbers of factors selected from the 80%

training data and 90% training data are about 15.6 and 17.5, respectively. We

compare the proposed method with existing methods in Section 4.

Table 4 indicates that the proposed FR-FI method has the best performance.

Specifically, the FR-FI method produces the smallest MSEs among all compet-

ing methods. The FR-FI method improves on the MSEs of the FR-ZERO and

FR-KNN methods by more than 10%, thus also demonstrating better imputa-

tion power. In addition, the FR-FI method improves on the MSEs of the iSFS

and iMSF methods by more than 2%, illustrating that the FR-FI method has

better prediction accuracy as a result of the joint modeling and incorporating

the correlation information of predictors.

6. Discussion

We have proposed a new factor-model imputation method for block-wise

missing data that builds an imputed factor regression model. A unique con-

tribution of our method is that we utilize the correlation information between

predictors to impute the missing data using a factor structure model. When

we have a group of completely observed subjects, the proposed method extracts

the correlation information from these subjects in order to estimate the missing

values. If we do not have fully observed subjects, we estimate the missing val-

ues through iterative factor-model imputing. The advantages of the proposed

method include that it does not rely on the missing mechanism or on the missing
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probability, and that it has a relatively low computational cost. Moreover, the

proposed method extracts information from all available data sources to build

imputed factor regression models efficiently. In the prediction process, we only

apply the observed part of testing data, which does not require imputing the

missing part of the testing data, owing to the nature of factor regression models.

We also show the theoretical properties of the proposed method, along with

its numerical performance. We demonstrate the theoretical convergence rate and

consistency of the estimators. Our simulation studies show that the proposed

method is robust under different missing rates and missing mechanisms, com-

pared with existing approaches. The proposed method demonstrates excellent

performance, even when the missing rate is high. In addition, the proposed

method outperforms competing methods when applied to the ADNI-2 data.

In the proposed method, we only consider a linear model for the dimen-

sion reduction. The proposed factor-model imputation can be extended to more

complex predicting models, such as nonlinear regressions and nonparametric re-

gressions. In addition, it would be worth investigating the properties of the

iterative factor-model imputation without completely observed subjects.

Supplementary Material

The online Supplementary Material contains all technical conditions and

proofs.
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